EASA Proposed CM-PIFS-003 Issue 01 – Turbine Over-speed Resulting from Shaft Failure (previously referred to as Non-Hazardous Shaft Failures) - Comment Response Document

Comment				Comment summary	Suggested resolution	Comment is	Comment is substantive	EASA	
NR	Author	Section, table, figure	Page			an observation or is a suggestion	or is an objection	comment disposition	
1	Francis Fagegaltier			The referenced document is apparently focused on turbine rotor overspeed after shaft failure (see in "background" paragraph: "a shaft failure may not match the results of the predictive analysis, therefore creating the risk of rotor overspeed"). With regard to this safety issue, the document does not draw comments. However, when interpreting CS-E 850 (b) (1), the release of the complete fan rotor on a turbofan engine should not be forgotten. Example of such potential hazardous effect can be found in the NTSB report found at http://www.airdisaster.com/reports/ntsb/AAR 82-05.pdf. This safety concern was expressed in the sentence "Where it is claimed that Hazardous Engine Effects are avoided by ensuring that rotating components are retained substantially in their normal plane of rotation". When discussing the current text of what is now CS-E 850, this failure case had been a difficult subject and is a significantly different scenario than turbine rotor overspeed.				Partially Accepted	We ackn rotor be commen that resu of this fai predicta turbine in technolo deemed significa consequ However policy ar explanat Firstly, t "Turbin order to Secondly In <u>2. B4</u> Recent s following predictiv overspective failure. unforese logic, inin assumptie etc In <u>3.1 E</u> Per CS-I shaft sy ("Non-H a test w For shaft consider • The test
2	CAA UK			Re: 1. Proposed Equivalent Safety Finding on CS E-740 and CS E-750 – Endurance Test and Engine Starting Tests; 2. Proposed Certification Memorandum on Non-Hazardous Shaft Failures Please note that there are no comments from the UK CAA on the above referenced documents.				Noted	
3	Turbomeca	3.1	5	"If compliance is not shown with a full engine test but with a system or component rig test, it should be shown that the rig test is highly representative in term of the key characteristics of the shaft failure and its consequences on all relevant engine parts and sub-systems behaviour, as it would occur on a full engine." Comment: "highly representative" should be replaced by "sufficiently representative". The proposed wording is deemed more appropriate as "highly representative" could be interpreted as "identical".	" <u>highly</u> representative" should be replaced by " <u>sufficiently</u> representative".	No	Yes	Accepted	The com 8 for mc

EASA response

cknowledge that the policy addresses in essence turbine behaviour as a consequence of shaft failure. The nenter mentions the case of a forward fan shaft failure esulted in the release of a fan rotor. The probable causes s fan shaft failure have been determined by the accident tigation. We believe that the consequences of this fan failure - release of the fan rotor – are currently more ctable than the consequences of a shaft failure leading to ne rotor overspeed. Also the evolution of engine ology and features in fan and surrounding designs are not ed to have recently substantially evolved, up to icantly increased the risk of underestimating these quences.

ver to address the comment, some amendments to the r are implemented to clarify its scope according to the nations above.

y, the title of the Certification Memorandum is changed to bine Over-speed Resulting from Shaft Failure" in to clarify its scope.

ndly, the text is amended as shown below:

BACKGROUND

It service experience has shown that engine behaviour ving a shaft failure may not match the results of the ctive analysis, therefore creating the risk of turbine rotor peed in excess of the predicted value, and uncontained e. This may be due to one or more of the following: eseen effects of improved aerodynamics and/or control inaccurate compressor surge predictions, improper nptions of rotor to stator friction and/or clashing effects,

<u>1 EASA POLICY</u>

S-E 850 (b)(1), when it is claimed that Failures of the systems will not result in Hazardous Engine Effects -Hazardous Shaft Failures") <mark>caused by turbine overspeed</mark>, ^t will normally be required.

haft failure resulting in turbine rotor overspeed, EASA ders the following:

test should be performed

omment is accepted. See EASA response to comment NR modified text.

EASA Proposed CM-PIFS-003 Issue 01 – Turbine Over-speed Resulting from Shaft Failure (previously referred to as Non-Hazardous Shaft Failures) - Comment Response Document

Comment				Comment summary	Suggested resolution	Comment is	Comment is	EASA	
NR	Author	Section, table, figure	Page			an observation or is a suggestion	substantive or is an objection	comment disposition	
4	Turbomeca	3.1	6	"The analysis should be validated against an actual engine test and/or service events, showing a high degree of similarity with the engine model for which compliance is sought. This similarity should encompass all relevant aspects of the failure mechanism and its consequences such as, but not limited to, aerodynamics, surge characteristics, engine control logic, rotor speeds and associated acceleration characteristics, relevant rotor and stator design features, materials, clearances, etc and should be submitted to the Agency for acceptance." Comment: "a high degree of similarity" should be replaced by "sufficient similarity". The proposed wording is deemed more appropriate as "a high degree of similarity" could be interpreted as "identical".	" <u>a high degree</u> of similarity" should be replaced by " <u>sufficient</u> similarity".	No	Yes		The cor 9 for m
5	Boeing Commercial Airplanes	Sec. 3.1	5/6	Boeing has concerns about systems that automatically shut down engines in flight. Active overspeed systems risk false activation at a rate that may be higher than the underlying shaft failure rate. As such, there may be the potential for multiple in-flight shutdowns or thrust asymmetry during a critical flight phase.	We recommend Inserting the following text in this section: "Where active overspeed protection devices are installed, they must be shown to resist false activation at rates that do not compromise aircraft safety."		Yes	Not Accepted	Notwith comme relevan from th policy i showing It is als Engine The pol
6	Rolls-Royce Plc (ZM)	2a) Last Sentence.	5	Although leaving the cert by analysis route open, this pushes towards having to test to better validate assumptions where the consequences are not readily predictable.	Suggested: 'The analysis should be validated against an actual engine test and/or service events'.	Yes	No	Not Accepted	Section may no The sug
7	Rolls-Royce Plc (ZM)	3.1 First Bullet Point.	5	Cannot accept the statement as it may not always be practical to perform/duplicate a test at the most critical condition. It may not even be possible to define one point as the most critical, so some level of correction to other conditions is needed. Also it would force the applicant to consider shaft failure conditions which may be highly unlikely (extremely remote or less), but which then would become the sizing factor for the whole shaft system.	Suggested: 'The test should be performed by initiating the shaft failure at the most critical conditions (where practical) which will maximise the rotor overspeed and subsequent effects. Where it is impractical to fully duplicate the most critical conditions, it is allowable to test at suitably representative conditions to analytically account for the most critical conditions. Failure conditions with a probability of Extremely Remote or less do not need to be taken into account. In addition to initial rotor speed other aspects should also be taken into consideration, such as shaft torque and relevant engine pressures and temperatures'.	No	Yes	Partially Accepted	The pro- replace condition configu service. for acce failures Remote all requires <i>In <u>3.1</u>. The tent the mo- flight ent maximulit is impleted condition accepta should and relu- predictor less do require</i>

EASA response

comment is accepted. See EASA response to comment NR modified text.

vithstanding the importance of the issue addressed by the ment, the proposal is not accepted. The comment is ant for the Safety Analysis at aircraft level, using input the Safety Analysis at engine level. The purpose of this y is to provide additional guidance when an Applicant is ving compliance with CS-E 850 (b)(1).

also to be noted that current CS-E 50 (c) addresses ne Control System Failures.

policy is not modified.

ion 2.(a) is an extract of current AMC E 850, and therefore not be altered.

suggested text is already part of Section 3.1.

proposal is accepted in principle. The text is amended to ace "most critical conditions" by "worst case operating litions within the flight envelope, in any dispatchable iguration", to discard "worst cases" that cannot occur in ice. The need to submit the test conditions to the Agency cceptance is added. The allowance to not consider the res predicted to occur with a probability of Extremely ote or less is also added, with the condition that they mee equirements of CS-E 850 (b)(2). The policy is modified as NS:

<u>.1 EASA POLICY</u>

test should be performed by initiating the shaft failure at most critical worst case operating conditions within the envelope, in any dispatchable configuration, which will imise the rotor overspeed and subsequent effects. Where impractical to fully duplicate the worst case conditions, the licant may propose a test at suitably representative litions to account for the worst case conditions. Those test itions would need to be submitted to the Agency for ptance. In addition to initial rotor speed other aspects Ild also be taken into consideration, such as shaft torque relevant engine pressures and temperatures. Failures licted to occur with a probability of Extremely Remote_or do not need to be taken into account, if they meet all irements of CS-E 850 (b)(2).

EASA Proposed CM-PIFS-003 Issue 01 – Turbine Over-speed Resulting from Shaft Failure (previously referred to as Non-Hazardous Shaft Failures) - Comment Response Document

	Com	ment		Comment summary	Suggested resolution	Comment is	Comment is substantive	EASA	
NR	Author	Section, table, figure	Page			an observation or is a suggestion	or is an objection	comment disposition	
8	Rolls-Royce Plc (ZM)	3.1 Second Bullet Point.	5	Implies there will only be one system or rig test. It should be left open for doing more than one test, with the tests together making the case. This would be similar to the approach in the AMC for Hazardous Shaft failures (4(b))	Suggested: 'If compliance is not shown with a full engine test but with a system or component rig test(s), it should be shown that the test(s) are sufficiently representative in terms of the characteristics of the shaft failure and its consequences to all relevant engine parts and sub-systems'.	Yes	No	Partially Accepted	The cor more the engine is modified In <u>3.1</u> of <i>If corr</i> system rig test the key on all re would co
9	Rolls-Royce Plc (ZM)	3.1 Third Bullet Point + Sub Bullet	5/6		Suggested: 'If compliance is shown by analysis as allowed by AMC E 850 (2), the following aspects should be considered, whether or not the affected rotor components are designed to be retained substantially in their rotational plane: - The analysis should ideally be validated against an actual engine test and/or service events, showing a sufficient degree of similarity with the engine model for which compliance is sought. Alternative means of validating the analysis may be considered but will require review and approval on a case by case basis. This similarity should encompass all relevant aspects of the failure mechanism and its consequences such as, but not limited to, aerodynamics, surge characteristics, regine control logic, rotor speeds and associated acceleration characteristics, relevant rotor and stator design features, materials, clearances, etc and should be submitted to the Agency for acceptance'.	Yes	Yes	Partially Accepted	The pol validation or comp the pre- than test increase <i>In</i> <u>3.1</u> <i>I</i> - <i>The at</i> <i>system</i> <i>showing</i> <i>model f</i>

EASA response

omment is partially accepted. The possibility to perform than one test is included. However the analogy to full e behaviour is retained as in the current text. The policy dified as follows:

<u>1 EASA POLICY</u>

ompliance is not shown with a full engine test but with a m or component rig test<mark>(s)</mark>, it should be shown that the st<mark>(s)</mark> is are highly sufficiently representative in term of ey characteristics of the shaft failure and its consequences I relevant engine parts and sub-systems behaviour, as it l occur on a full engine.

olicy already establishes the necessary conditions for ating the analysis. However the possibility to use system mponent rig test may be repeated in this paragraph as in revious bullet. But allowing "alternative means" other test(s) for validating the analysis would pose the risk of ased inaccuracy. The policy is modified as follows:

<u>1 EASA POLICY</u>

e analysis should be validated against an actual engine <mark>or</mark> emarys is should be validated against an actual engine <mark>or</mark> or component rig test(s) and/or service events, ving a high sufficient degree of similarity with the engine el for which compliance is sought.